Python批量处理中文文本并解析关键词

介绍几个处理文本的模块。

本文的使用环境在Ubuntu17.10、Pycharm 2017.3编辑器,以及Python3.6.3。


模块安装和导入

pip3 install wordcloud
pip3 install jieba
pip3 install python-docx
pip3 install snownlp
pip3 install pyLDAvis
pip3 install textRank4zh

读入文本

若是docx文本,以下为处理一个文本的代码,批量处理可用数组储存文件名再遍历

1
2
3
4
5
import docx
file=docx.Document("example.docx")#可修改文件名
text=" "
for para in file.paragraphs:
text+=para.text

若是单个txt文本,

1
2
3
text = "example.txt" #可以修改文件名
with open(text,"r",encoding='gbk',errors='ignore') as f:
mytext=f.read()

生成词云

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from os import path
from wordcloud import WordCloud
import os
d = path.dirname(__file__)#该文件所在的文件夹路径

font=os.path.join(os.path.dirname(__file__), "arialuni.ttf")#arialuni.ttf为字体的包

# 读入文本
mytext = "santi.txt" #可更换文件名
with open(mytext,"r",encoding='gbk',errors='ignore') as f:
text=f.read()

# Generate a word cloud image加载词云
wordcloud = WordCloud().generate(text)

# Display the generated image:
# the matplotlib way:
import matplotlib.pyplot as plt
plt.imshow(wordcloud)
plt.axis("off")

# lower max_font_size
wordcloud = WordCloud(font_path=font,max_font_size=40).generate(text)
plt.figure()
plt.imshow(wordcloud)
plt.axis("off")
plt.show()

# The pil way (if you don't have matplotlib)
#image = wordcloud.to_image()
#image.show()

提取关键词和分类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from sklearn.feature_extraction.text import TfidfVectorizer,CountVectorizer
from sklearn.decomposition import LatentDirichletAllocation
#从文本中提取1000个最重要的特征关键词
n_features = 1000
tf_vectorizer = CountVectorizer(strip_accents = 'unicode',
max_features=n_features,
stop_words='english',
max_df = 0.5,
min_df = 10)
tf = tf_vectorizer.fit_transform(df.content_cutted)
#用LDA算法将主题分为5类
n_topics=5
lda = LatentDirichletAllocation(n_topics=n_topics,max_iter=50,
learning_method='online',
learning_offset=50,
random_state=0)
lda.fit(tf)
#输出五个主题的前若干个关键词的函数定义
def print_top_words(model,feature_names,n_top_words):
for topic_idx,topic in enumerate(model.components_):
print("Topic #%d:" % topic_idx)
print(" ".join([feature_names[i]
for i in topic.argsort()[:-n_top_words -1 :-1]]))
print()
#输出每个主题的前20个关键词
n_top_words=20
tf_feature_names=tf_vectorizer.get_feature_names()
print_top_words(lda,tf_feature_names,n_top_words)
#关键词和主题生成可交互的动态图
import pyLDAvis
import pyLDAvis.sklearn
pyLDAvis.enable_notebook()
pyLDAvis.sklearn.prepare(lda, tf, tf_vectorizer)
data = pyLDAvis.sklearn.prepare(lda, tf, tf_vectorizer)
pyLDAvis.show(data)

统计关键词出现的频率、关键词组和摘要

可直接参考github https://github.com/letiantian/TextRank4ZH。

情感分析

可直接参考github https://github.com/isnowfy/snownlp。

评论